Learning The "J"

Home » JAVA Learning » JAVA Core » Java Object Memory Structure » Java Objects Memory Structure

Java Objects Memory Structure

Memory layout of classes that have no instance attributes

In the JVM, every object (except arrays) has a 2 words header. The first word contains the object’s identity hash code plus some flags like lock state and age, and the second word contains a reference to the object’s class. Also, any object is aligned to an 8 bytes granularity. This is the first rule or objects memory layout:

Rule 1: every object is aligned to an 8 bytes granularity.

Now we know that if we call new Object(), we will be using 8 bytes of the heap for the two header words and nothing else, since the Object class doesn’t have any fields.

Memory layout of classes that extend Object

After the 8 bytes of header, the class attributes follow. Attributes are always aligned in memory to their size. For instance, ints are aligned to a 4 byte granularity, and longs are aligned to an 8 byte granularity. There is a performance reason to do it this way: usually the cost to read a 4 bytes word from memory into a 4 bytes register of the processor is much cheaper if the word is aligned to a 4 bytes granularity.

In order to save some memory, the Sun VM doesn’t lay out object’s attributes in the same order they are declared. Instead, the attributes are organized in memory in the following order:

  1. doubles and longs
  2. ints and floats
  3. shorts and chars
  4. booleans and bytes
  5. references

This scheme allows for a good optimization of memory usage. For example, imagine you declared the following class:

class MyClass {
    byte a;
    int c;
    boolean d;
    long e;
    Object f;        
}

If the JVM didn’t reorder the attributes, the object memory layout would be like this:

[HEADER:  8 bytes]  8
[a:       1 byte ]  9
[padding: 3 bytes] 12
[c:       4 bytes] 16
[d:       1 byte ] 17
[padding: 7 bytes] 24
[e:       8 bytes] 32
[f:       4 bytes] 36
[padding: 4 bytes] 40

Notice that 14 bytes would have been wasted with padding and the object would use 40 bytes of memory. By reordering the objects using the rules above, the in memory structure of the object becomes:

[HEADER: 8 bytes] 8

[e:       8 bytes] 16
[c:       4 bytes] 20
[a:       1 byte ] 21
[d:       1 byte ] 22
[padding: 2 bytes] 24
[f:       4 bytes] 28
[padding: 4 bytes] 32

This time, only 6 bytes are used for padding and the object uses only 32 bytes of memory.

So here is rule 2 of object memory layout:

Rule 2: class attributes are ordered like this: first longs and doubles; then ints and floats; then chars and shorts; then bytes and booleans, and last the references. The attributes are aligned to their own granularity.

Now we know how to calculate the memory used by any instance of a class that extends Object directly. One practical example is the java.lang.Boolean class. Here is its memory layout:

[HEADER:  8 bytes]  8 
[value:   1 byte ]  9
[padding: 7 bytes] 16

An instance of the Boolean class takes 16 bytes of memory!  (Notice the padding at the end to align the object size to an 8 bytes granularity.)

Memory layout of subclasses of other classes

The next three rules are followed by the JVM to organize the the fields of classes that have superclasses. Rule 3 of object memory layout is the following:

Rule 3: Fields that belong to different classes of the hierarchy are NEVER mixed up together. Fields of the superclass come first, obeying rule 2, followed by the fields of the subclass.

Here is an example:

class A {
   long a;
   int b;
   int c;
}

class B extends A {
   long d;
}

An instance of B looks like this in memory:

[HEADER:  8 bytes]  8
[a:       8 bytes] 16
[b:       4 bytes] 20
[c:       4 bytes] 24
[d:       8 bytes] 32

The next rule is used when the fields of the superclass don’t fit in a 4 bytes granularity. Here is what it says:

Rule 4: Between the last field of the superclass and the first field of the subclass there must be padding to align to a 4 bytes boundary.

Here is an example:

class A {
   byte a;
}

class B {
   byte b;
}
[HEADER:  8 bytes]  8
[a:       1 byte ]  9
[padding: 3 bytes] 12
[b:       1 byte ] 13
[padding: 3 bytes] 16

Notice the 3 bytes padding after field a to align b to a 4 bytes granularity. That space is lost and cannot be used by fields of class B.

The final rule is applied to save some space when the first field of the subclass is a long or double and the parent class doesn’t end in an 8 bytes boundary.

Rule 5: When the first field of a subclass is a double or long and the superclass doesn’t align to an 8 bytes boundary, JVM will break rule 2 and try to put an int, then shorts, then bytes, and then references at the beginning of the space reserved to the subclass until it fills the gap.

Here is an example:

class A {
  byte a;
}

class B {
  long b;
  short c;  
  byte d;
}

Here is the memory layout:

[HEADER:  8 bytes]  8
[a:       1 byte ]  9
[padding: 3 bytes] 12
[c:       2 bytes] 14
[d:       1 byte ] 15
[padding: 1 byte ] 16
[b:       8 bytes] 24

At byte 12, which is where class A ‘ends’, the JVM broke rule 2 and stuck a short and a byte before a long, to save 3 out of 4 bytes that would otherwise have been wasted.

Memory layout of arrays

Arrays have an extra header field that contain the value of the ‘length’ variable. The array elements follow, and the arrays, as any regular objects, are also aligned to an 8 bytes boundary.

Here is the layout of a byte array with 3 elements:

[HEADER:  12 bytes] 12
[[0]:      1 byte ] 13
[[1]:      1 byte ] 14
[[2]:      1 byte ] 15
[padding:  1 byte ] 16

And here is the layout of a long array with 3 elements:

[HEADER:  12 bytes] 12
[padding:  4 bytes] 16
[[0]:      8 bytes] 24
[[1]:      8 bytes] 32
[[2]:      8 bytes] 40

Memory layout of inner classes

Non-static inner classes have an extra ‘hidden’ field that holds a reference to the outer class. This field is a regular reference and it follows the rule of the in memory layout of references. Inner classes, for this reason, have an extra 4 bytes cost.

Final thoughts

We have learned how to calculate the shallow size of any Java object in the 32 bit Sun JVM. Knowing how memory is structured can help you understand how much memory is used by instances of your classes.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Start here

%d bloggers like this: